Original Article

Optimization of Oleuropein Extraction from Organic Extracts Using a Microfluidic Device and Response Surface Methodology

Rouhollah Heydarid¹, Masoud Rahimi², Nasim Naleini¹

¹Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
²CFD Research Center, Department of Chemical Engineering, Razi University, Taghe Bostan, 67149 Kermanshah, Iran

Received: 01.10.2018; Accepted: 15.12.2018

Abstract

Background and Aim: Pharmaceutical applications of natural materials from plants date back to ancient times. Oleuropein is one of the compounds that are found in olive leaves, fruit, bark and roots of Olea europaea (the olive tree) that cause the bitter taste of olive oil and fruit. The aim of this study was to develop and optimize the microfluidic device for the extraction of oleuropein into the aqueous phase using response surface methodology.

Materials and Methods: In this study, a microfluidic device was used for the extraction of oleuropein from the organic extract of olive leaves into the aqueous phase. The effects of main parameters on the extraction efficiency including temperature, flow rate ratio (ethyl acetate/water) and residence time were investigated and optimized by response surface methodology (RSM).

Results: The maximum extraction yield was obtained under the following conditions: deionized water as extractant phase, temperature of 40°C, flow rate ratio of 0.16 and residence time of 0.1010 min. The extraction yield of 70.93% was obtained under the above conditions with relative standard deviation of 2.0 %. The results of the analysis of variance indicate that unlike temperature, flow rate ratio and residence time are significant parameters. Moreover, square of temperature, flow rate ratio, residence time and interaction of flow rate ratio and residence time are significant factors. The extraction yield of the proposed microchannel was compared with conventional batch extraction method.

Conclusion: The results show that the proposed technique can successfully be applied to the extract of oleuropein from the organic phase into the aqueous phase.

Keywords: Extraction, Olive Leaves, Oleuropein, Microfluidic, Response Surface Methodology

*Corresponding Author: Rouhollah Heydarid, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Tel: (+98) 66 33225012; Fax: (+98) 66 33204005. Email: rouhollahheydari@yahoo.com.

Introduction

Liquid-Liquid Extraction (LLE) techniques are used for several purposes including concentration and extraction of analytes and also the removal of interferences in different fields such as industrial, analytical and medicinal fields. The conventional LLE method suffers from a number of disadvantages such
Oleuropein extraction using a microfluidic device

Heydari et al.

as being time consuming. Moreover, it requires large amounts of solvent and also it is laborious. On the other hand, due to the small surface to volume ratio, mass transfer and extraction efficiency are low in conventional LLE method. Hence, the miniaturization of LLE method using microchannels can promote its application in various fields (1). A large surface to volume ratio and smaller molecular distance in microchannels than conventional LLE method lead to fast mass transfer (2). For these reasons, the volume of solvents, process time and cost could be decreased (3, 4). In recent years, the microchannel devices have been widely applied for different uses such as synthesis of organic molecules (5), synthesis of nanoparticles (6), kinetic studies (7, 8), emulsification (9), solvent extraction (10-12), DNA extraction (13), solid-phase extraction (14,15), laser reaction control (16), immunoassay (17), flow-injection analysis (18, 19), biofuel processes (20-22) and partition coefficient (log D) determination (23). The application of LLE method using microfluidic devices has been reported for the extraction of analytes from the aqueous phase into the organic phase and vice versa. For example, the LLE extraction of uranium in HCl media by Aliquats 336 was performed using a Y-Y shaped microfluidic device (24). In this study, an extraction yield of 87% was obtained for an aqueous contact time of only 0.6 s in a microchannel volume of 320 nL. Furthermore, Xu et al. enhanced the mass transfer of succinic acid from n-butanol into the aqueous drops using a microfluidic device (25). Extraction of iron as Fe-bathophenanthroline disulfonic acid complex from the aqueous phase into chloroform is another example of microchannel application in the LLE method (10).

Pharmaceutical applications of natural materials from plants date back to ancient times (26). Oleuropein is one of the compounds that are found in olive leaves, fruit, bark and roots of Olea europaea (the olive tree) that cause the bitter taste of olive oil and fruit (27, 28). It belongs to a group of compounds that are referred to as polyphenols. During the exposure of enzyme, oleuropein decomposes to enolic acid and hydroxytyrosol. Oleuropein has beneficial properties in medical and food products including antibiotic (29), antimicrobial and antifungal (30, 31), antimalarial (32), dairy products (33) food antioxidant (34, 35) and the prevention of Alzheimer (36). For these reasons, the separation and purification of oleuropein from inexpensive sources using economic methods is an essential procedure. The most common problem in the extraction process is the usage of toxic extractants such as the mixture of methanol-water (37) or methanol-hexane (38). The separation and purification of flavonoids and oleuropein from olive leaves using macroporous resins have already been reported (39). The use of resin is time consuming, expensive and involves various numerous steps. It seems necessary to find a simple, safe and cost effective method for the extraction of oleuropein into a safe medium.

The aim of this study was to develop and optimize the microfluidic device for the extraction of oleuropein into the aqueous phase using response surface methodology. The influences of effective parameters such as temperature, flow rate ratio, residence time and their interactions on extraction yield of oleuropein were investigated and explained.

Experimental

Preparation of Organic Extract

In order to carry out the extraction of oleuropein from olive leaves into the ethyl acetate, 10 g of air-dried and pulverized Olea europaea leaves were subjected to mechanical stirring for 24 h with 100 mL ethyl acetate. The supernatant phase was separated by filtration (Whatman filter paper). The obtained solution was used as the feed for microfluidic extraction.

Microfluidic Extraction

A schematic diagram of the proposed microfluidic device and process sequence has been shown in our previous report (40). Briefly, a T-shaped microchannel was used as the mixing chamber. The geometric dimensions of the T-shaped microchannel were 2.3 mm, 800 μm and 8.5 mm in outer diameter, inner diameter and length, respectively. In order to increase the length of contact time between the two phases (ethyl acetate and aqueous phase), a coil (outer diameter; 2.0 mm, inner diameter; 600 μm, length; 900 mm) was used in outlet stream. The syringe pumps were used as the driving force to divert feed in each inlet stream (ethyl acetate extract and aqueous phase). The T-shaped microchannel and coil were placed in a
water bath for temperature control. In the outlet stream, the two phases were separated according to their densities (aqueous phase at the bottom and ethyl acetate at the top of collector tube). The concentration of oleuropein in two phases was determined using high-performance liquid chromatography (HPLC) system. The results were reported in term of extraction yield percentage and were compared with that of batch process.

Materials and Methods

Oleuropein (purity \geq 98% by HPLC) was purchased from INDOFINE Chemical Company (Hillsborough, USA). Acetonitrile (HPLC grade), ethyl acetate, methanol, sodium hydroxide, dibasic sodium phosphate, potassium dihydrogen phosphate and orthophosphoric acid were purchased from Merck Chemical (Darmstadt, Germany). All solutions were prepared with deionized water from a Milli-Q system (Millipore, USA).

Samples

Olea europaea (variety Sevillana) leaves were collected from Agricultural Research Garden, Khorramabad, Iran. Before the extraction, the leaves were washed and dried, then milled, homogenized and kept at 4°C until analysis. The same sample was used in the whole optimization study.

Standard Solutions Preparation

A stock standard solution (4000 mg/L) was prepared by dissolving oleuropein in methanol. Working standard solutions at the concentrations of 500-2000 mg/L were prepared by diluting the suitable volume of the stock standard with deionized water. Oleuropein content (mg) in aqueous and organic phases were calculated by using calibration curve.

Chromatographic Conditions

The HPLC system (Shimadzu Corporation, Kyoto, Japan), which consisted of a quaternary pump (LC-10ATvp), UV-Vis detector (SPD-M10Avp), vacuum degasser and system controller (SCL-10Avp) was used. A manual injector with a 10 μL sample loop was applied for loading the sample. Class VP-LC workstation was employed to acquire and process chromatographic data. A reversed-phase C$_{18}$ analytical column (Shim-Pack VP-ODS, 250 mm × 4.6 mm i.d., Shimadzu, Japan) was used.

The mobile phase consisted of phosphate buffer (0.05 mol/L and pH 3 adjusted with orthophosphoric acid) and acetonitrile (70:30, v/v). Prior to the preparation of the mobile phase, buffer solution and acetonitrile were degassed separately using a Millipore vacuum pump. The UV detector was set at 254 nm. The chromatograms were run for 10 min at a flow rate of 1.0 mL/min at ambient temperature.

Experimental Design

In order to reach the optimum extraction conditions, the effect of various parameters such as pH, temperature, flow rate ratio and residence time were examined. A central composite design (CCD) was used to optimize and evaluate the experimental conditions of the microfluidic extraction technique. Our previous study indicated that pH could not have a significant effect on the extraction efficiency of target analytes (40). Therefore, temperature, flow rate ratio and residence time were selected as main variables. According to preliminary experimental results, low and high levels of main parameters including temperature (A), flow rate ratio (B) and residence time (C) were selected. The range and center point values of these parameters have been shown in Table 1. The extraction conditions were optimized using Design Expert software package (version 7.0.0). The extraction yield percentage of oleuropein was calculated according to the follow equation.

$$Yield(\%) = \frac{m_a}{m_t} \times 100$$ \hspace{1cm} (1)

In which m_a is the oleuropein content (mg) in aqueous phase and m_t is the total content of oleuropein in ethyl acetate phase.

Results and Discussion

The extraction yield of oleuropein from the ethyl acetate into the aqueous phase using microfluidic device was affected by various factors including temperature, flow rate ratio (ethyl acetate/water) and residence time. The effects of these parameters on extraction yield of oleuropein were considered by central composite design. Extraction yield data obtained from 20 experimental runs have been listed in Table 1. Typical chromatograms of the extracted oleuropein into the aqueous phase using microfluidic device and ethyl acetate extract have been indicated in Fig. 2.
Due to low toxicity and high ability of ethyl acetate to extract oleuropein more than flavonoids, it was selected as the organic phase for the preparation of crude extract from olive leaves (39). On the other hand, according to Food and Drug Administration (FDA) solvent classification, ethyl acetate is a low toxic solvent which can be used in food and pharmaceutical industries (41).
Optimization of Extraction Process

Analysis of variance (ANOVA) results (Table 2) indicate that the proposed model for oleuropein extraction from ethyl acetate into the aqueous phase using microfluidic device is a quadratic model. R-squared value for this model is 0.9693 which shows
the correlation between experimental and theoretical results (Table 2). Other statistical parameters of the model have been shown in Table 2. Model equation (2) shows, according to coddled parameters, the

Figure 5. Response surface plot for extraction yield of oleuropein as a function of temperature and residence time.

Table 1: Central composite design with experimental conditions and extraction yield data.

<table>
<thead>
<tr>
<th>Run</th>
<th>Day</th>
<th>A: Temperature (°C)</th>
<th>B: Flow rate ratio</th>
<th>C: Residence time (min)</th>
<th>Extraction yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>60</td>
<td>1.50</td>
<td>0.0445</td>
<td>42.84</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>60</td>
<td>0.50</td>
<td>0.0445</td>
<td>47.41</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>20</td>
<td>1.50</td>
<td>0.1576</td>
<td>49.21</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>20</td>
<td>0.50</td>
<td>0.1576</td>
<td>61.93</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>20</td>
<td>0.50</td>
<td>0.0445</td>
<td>49.32</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>40</td>
<td>1.00</td>
<td>0.1010</td>
<td>61.05</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>60</td>
<td>1.50</td>
<td>0.1576</td>
<td>49.82</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>20</td>
<td>1.50</td>
<td>0.0445</td>
<td>44.39</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>60</td>
<td>0.50</td>
<td>0.1576</td>
<td>63.91</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>40</td>
<td>1.00</td>
<td>0.1010</td>
<td>62.18</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>40</td>
<td>1.00</td>
<td>0.1010</td>
<td>65.64</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>40</td>
<td>1.00</td>
<td>0.1010</td>
<td>63.89</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>40</td>
<td>0.16</td>
<td>0.1010</td>
<td>70.93</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>40</td>
<td>1.00</td>
<td>0.1010</td>
<td>60.62</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>40</td>
<td>1.84</td>
<td>0.1010</td>
<td>43.35</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>73.6</td>
<td>1.00</td>
<td>0.1010</td>
<td>55.82</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>40</td>
<td>1.00</td>
<td>0.0060</td>
<td>30.15</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>40</td>
<td>1.00</td>
<td>0.1961</td>
<td>48.23</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>40</td>
<td>1.00</td>
<td>0.1010</td>
<td>61.29</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>6.36</td>
<td>1.00</td>
<td>0.1010</td>
<td>54.96</td>
</tr>
</tbody>
</table>
mathematical relationship between the studied parameters and extraction yield of oleuropein.

Extraction yield = +62.21 + 0.042 A - 6.06 B + 5.22 C - 0.13 A B + 0.76 A C - 2.16 B C - 2.21 A^2 - 1.59 B^2 - 7.93 C^2

\[(2)\]

ANOVA results indicate that the flow rate ratio (B), residence time (C), BC interaction, A^2, B^2 and C^2 are significant model terms and the lack of fit was not significant at the 5% level (P > 0.05). The results indicate temperature (A), AB and AC interactions do not have significant effects on the extraction yield of oleuropein using the microfluidic system.

The influences of studied parameters including temperature, flow rate ratio and residence time on extraction yield of oleuropein are shown in three-dimensional (3D) response surface graphs. Three-dimensional graphs reflect the effects of two variables on the response value, while the other variables were kept at zero level.

In order to investigate the temperature effect, the microchannel (T-shaped microchannel and coil) was placed in a water bath at different temperatures according to experimental runs. As observed from Figs. 3 and 5, temperature variation does not have a significant impact on the extraction yield of oleuropein. The reason for this phenomenon can be the high contact surface between the two phases in microchannels. On the other hand, due to high contact surface between the two phases in microchannels, mass transfer occurred easily and no driving force is required.

The effects of different flow rates of input streams at the constant total flow rate were examined according to experimental design runs. Figs. 3 and 4 indicate the effect of flow rate ratio (rate of ethyl acetate to water) on the extraction yield of oleuropein. In conventional LLE method, increasing the ratio of aqueous phase to organic phase raises the extraction yield. Hence, the maximum extraction yield was observed at minimal ratio of organic phase to aqueous phase. As indicated in Table 1, in line with conventional LLE method, the highest extraction yield was obtained in minimum flow rate ratio (run 13). Fig. 3 shows that the extraction yield decreased at higher flow rate ratio (>1). At higher flow rate ratios the amount of extractant phase compared to organic phase was

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F Value</th>
<th>P-value</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>18.51</td>
<td>1</td>
<td>18.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>1857.31</td>
<td>9</td>
<td>206.37</td>
<td>31.59</td>
<td><0.0001</td>
<td>significant</td>
</tr>
<tr>
<td>A-Temperature</td>
<td>0.024</td>
<td>1</td>
<td>0.024</td>
<td>3.723E-003</td>
<td>0.9527</td>
<td></td>
</tr>
<tr>
<td>B-Flow rate ratio</td>
<td>500.72</td>
<td>1</td>
<td>500.72</td>
<td>76.65</td>
<td><0.0001</td>
<td>significant</td>
</tr>
<tr>
<td>C-Residence time</td>
<td>372.42</td>
<td>1</td>
<td>372.42</td>
<td>57.01</td>
<td><0.0001</td>
<td>significant</td>
</tr>
<tr>
<td>AB</td>
<td>0.13</td>
<td>1</td>
<td>0.13</td>
<td>0.020</td>
<td>0.8920</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>4.58</td>
<td>1</td>
<td>4.58</td>
<td>0.70</td>
<td>0.4243</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>37.45</td>
<td>1</td>
<td>37.45</td>
<td>5.73</td>
<td>0.0403</td>
<td>significant</td>
</tr>
<tr>
<td>A^2</td>
<td>70.10</td>
<td>1</td>
<td>70.10</td>
<td>10.73</td>
<td>0.0096</td>
<td>significant</td>
</tr>
<tr>
<td>B^2</td>
<td>36.30</td>
<td>1</td>
<td>36.30</td>
<td>5.56</td>
<td>0.0428</td>
<td>significant</td>
</tr>
<tr>
<td>C^2</td>
<td>906.44</td>
<td>1</td>
<td>906.44</td>
<td>138.76</td>
<td><0.0001</td>
<td>significant</td>
</tr>
<tr>
<td>Residual</td>
<td>58.79</td>
<td>9</td>
<td>6.53</td>
<td>3.02</td>
<td>0.1534</td>
<td>Not significant</td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>46.48</td>
<td>5</td>
<td>9.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Error</td>
<td>12.32</td>
<td>4</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>1934.61</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev. *</td>
<td>2.56</td>
<td></td>
<td>R-Squared</td>
<td>0.9693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>54.35</td>
<td></td>
<td>Adj R-Squared</td>
<td>0.9386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V. (%) *</td>
<td>4.70</td>
<td></td>
<td>Pred R-Squared</td>
<td>0.7390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>500.07</td>
<td></td>
<td>Adeq Precision</td>
<td>19.475</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aStandard deviation, bCoefficient variation
Oleuropein extraction using a microfluidic device

Heydari et al.

Herbal Medicines Journal 2018; 3(2):60-9

Table 3: Results of microfluidic and batch extraction.

<table>
<thead>
<tr>
<th>Method</th>
<th>Yield (%) ± RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 (mL)(^a)</td>
</tr>
<tr>
<td>Batch</td>
<td>52.6 ± 2.0</td>
</tr>
<tr>
<td>Microfluidic</td>
<td>65.4 ± 1.2</td>
</tr>
</tbody>
</table>

\(^a\) Total volume including 25 mL ethyl acetate and 25 mL water.
\(^b\) Total volume including 50 mL ethyl acetate and 50 mL water.
\(^c\) Total volume including 100 mL ethyl acetate and 100 mL water.

reduced which in turn increased the extraction yield. The effects of residence time on the extraction yield have been shown in Figs. 4 and 5. Residence time and its interaction with flow rate ratio are significant parameters in the proposed model (Table 2). It is expected that mass transfer from the organic phase into the aqueous phase increases with the increased contact time between these two phases. Figs. 4 and 5 show the increase of residence time up to 0.1 min lead to increase of extraction yield with more slope and then decreased slowly.

Models Evaluation
Under the adjusted conditions (temperature; 40 ºC, flow rate ratio; 1.0 and residence time; 0.1 min), the maximum predicted extraction yield of oleuropein by the proposed quadratic model is equal to 65.0%. In order to investigate the reliability of the model, a verification test was carried out under the adjusted conditions. The mean extraction yield of oleuropein for three measurements was 65.2%. Clearly, the obtained experimental result is in agreement with the predicted response.

The Comparison of Microfluidic and Batch Extraction Efficiencies
In order to compare the microfluidic and batch processes, three different volumes including 25, 50 and 100 mL of ethyl acetate extract were mixed with the same volumes of water and were subsequently stirred for 45 min at 40 ºC. The extraction process using microfluidic device was achieved under the following conditions: flow rate ratio: 1, temperature: 40 ºC and residence time: 0.1010 min. The results have been indicated in Table 3. As it can be observed, the extraction yield by microfluidic device was approximately 15% more than batch process extraction. On the other hand, the required time for the batch extraction (45 min) is higher than microfluidic extraction (0.1293 min) which indicates the time saving in microfluidic device.

Conclusion
In this study, oleuropein was extracted from ethyl acetate into the aqueous phase using a microfluidic device. The mass transfer between the two immiscible phases (ethyl acetate and water) was intensively increased. Extraction process is a continuous extraction method which provides advantages such as environmentally friendly and high efficiency compared to conventional techniques. In order to find the effect of the main parameters and their interactions, optimization was achieved by a central composite design. The maximum extraction yield of 70.93% was obtained under the follow conditions: deionized water as extractant phase, temperature of 40 ºC, flow rate ratio of 0.16 and residence time of 0.1010 min. The results of the analysis of variance show that the temperature had not a significant effect on the extraction efficiency. The obtained results revealed that the extraction yield of oleuropein using the microfluidic device was improved compared to the batch process. Moreover, due to facility in scale-up, this method is expected to be used in mass production.

Acknowledgment
The authors gratefully acknowledge the support of Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad (Iran).

Conflict of Interest
The authors declare that they have no conflict of interest.
Isolation and identification of critical fluid

References

Oleuropein extraction using a microfluidic device

Heydarid et al.

© Rouhollah Heydarid, Masoud Rahimi, Nasim Naleini. Originally published in the Herbal Medicines Journal (http://www.hmj.lums.ac.ir), 18.08.2019. This article is an open access article under the terms of Creative Commons Attribution License, (https://creativecommons.org/licenses/by/4.0/), the license permits unlimited use, distribution, and reproduction in any medium, provided the original work is properly cited in the Herbal Medicines Journal. The complete bibliographic information, a link to the original publication on http://www.hmj.lums.ac.ir/, as well as this copyright and license information must be included.