Amelioration of Colitis from Nature and its Immunological Implications: Current and Future Perspectives

  • Emmanuel Oluwaseun Adediran* Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
  • Prabha S. Awale Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, United States of America
  • Udai P. Singh Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, Memphis, United States of America
Keywords: Colitis, Medicinal plants, Natural Products, Aryl hydrocarbon receptor, Immunology


Inflammatory Bowel Disease (IBD) is a chronic immune-mediated inflammatory condition of the intestine. IBD is characterized by abdominal pains, diarrhea, fever, chills, cramps, and bloating and if not properly managed, it can be life-threatening. Interestingly, medicinal plants have been identified and validated to attenuate this condition due to the presence of natural products using different animal models via aryl hydrocarbon receptor and Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways. This review briefly discusses some of the natural products and medicinal plants, that can be used and developed as therapeutics for IBD treatment coupled with their immunological consequences. It recommends the need to use computational approaches to identify novel targets as well as the synthesis of structural analogs of endogenous ligands and natural products that are modulators of the identified and novel molecular targets coupled with the profiling of their biological activities and side effects.


Zhou M., He J, Shen Y, Zhang C, Wang J, Chen Y. New frontiers in genetics, gut microbiota, and immunity: A rosetta stone for the pathogenesis of inflammatory bowel disease. Biomed. Res. Int.2017;1–17. (CrossRef) (PubMed)

Podolsky DK. The current future understanding of inflammatory bowel disease. Best Pract Res Clin Gastroenterol. 2002;16:933-43.

Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology. 2003;3:521-33.

Vazirian M, Nabavi SM, Jafari S, Manayi A. Natural activators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food and Chemical Toxicology. 2018.

Thea M, Manrico M, Matheo A R, Emilio J. Recent Advances on the anti-inflammatory and anti-oxidant properties of Red Grape Polyphenols:in vitro and in vivo studies. MDPI. 2020;9(1):35.

Ajileye EM, Obuotor EO, Akinkunmi MA. Aderogba Isolation and characterization of antioxidant and antimicrobial compounds from Anacardium occidentale L(Anacardacea) leaf extract. Journal of King Saud University-Science: 2015;27(3)244-52.

Isaokubo Masamitsu ochi, Paulo C Vieira, Sakae Komatsu. Antitumor agents from the cashew apple juice. Journal of Agricultural and food chemistry. 1993;41(6):1012-5.

Isao K, Ikuyo K, Yoshibiro Y. Tyrosine inhibitors from Anacardium occidentale fruit.Journal of Natural products.1994;57(4), 545-51.

Thomas OI, Abiodun OO, Abiola OS, Efere M, et al. Doubly linked A-type proanthocyanidin trimer and other constituents of ixora coccinea leaves and their antioxidant and antibacterial properties. Journal of phytochemistry. 2010;71(17-18):2092-8.

CY Ragasa,F Tiu,JA Rideont.New cycloartenol esters from ixora coccinea.Natural product research.Taylor and Francis. 2004.

Haji M, Muhammed Q, Ambreen I, Versiani MA, Tahiri IA, et al. Antioxidant antimicrobial activities of ixora coccinea root and quantification of phenolic compounds using HPLC. South African Journal of Botany. 2020;135:71-9.

Neelam S, Dinesh K, Singh V, Kumar S. Inhibition kinetics of acetylcholinestrase and phosphatases by the active constituents of Terminalia arjuna and Tamarindus indica in the cerebral ganglion of Lymnaea acuminate. Journal of Pharmacognosy. 2017;9(2).

Ganiyu O, Bukola Ch, Mayowa BA, Idowu S, Opeyemi B. Characterization and neuroprotective properties of alkaloids extract of vernonia amydalyna Delile in Experimental models of Alzehimea disease.Drug and Chemical Toxicology. 2020;1-10.

Abere H, Yadessa M. Antibacterial and antioxidant compounds from the flower extracts of vernonia amygdalina. Advances in Pharmacological sciences. 2018.

P Erasto DS, Grierson AJ, Afolayan.Antioxidant constituents in vernonia amydalina leaves. Pharmaceutical biology. 2007;45(3).195-9.

Ali I, Masood SB, et al. Inhibitory effect of black tea (Camellia sinensis) theaflavins and thearubigins against HCT 116 colon cancer cells and HCT 460 lung cancer cells.Journal of food biochemistry. 2019;43(5):212822.

Ayaka K, Arisa S, et al. New phenolic compounds from Camellia sinensis L.fermented leaves. Journal of natural medicines. 2013;67(3):652-6.

Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins.Food Sci Technol Bull. 2005;2:71-81(pubmeb:19844590).

Bertoldi M, Gonsalvi M, Voltattorni CB. Green tea polyphenols: Novel irreversible inhibitors of dopa decarboxylase. Biochem. Biophys. Res. Commun.. 2001;284:90-3.

Xin W, Quan L, Hongho Zh, Hongqing W. Flavanols from the Camellia sinensis var.assamica and their hypoglycemic and hypolipidemic activities.Acta pharmaceutica sinica B. 2017;7(3):342-6.

Augustine I Airaodion, Emmanuel O, Ogbonnaya E, Uloaku O, Olaide A, Olukule A. Ameliorative efficacy of phytochemical content of corchorus olitorius leaves against acute ethanol-induced oxidative stress in wistar rats.Asian Journal of Biochemistry, Genetics and Molecular Biology. 2019;1-10.

Augustine I, Emmanuel O, Ogbonnaya E, Uloaku O, Olaide A, Olukule A. Corchorus olitorius leaves on hypoglycemic and hypolipidaemic activities in albino rats.Asian Plant Research Journal. 2019;1-13.

Ganiyu O, Adedayo O , Ayodele J, Thomas H, Jamiyu A, Uine S. Inhibitory effect of polyphenol-rich extracts of jute leaf(corchorus olitorius) on key enzyme linked to type 2 diabetes(alpha-amylase and alpha-glucosidase) and hypertension.Journal of functional foods. 2012;4(2):450-8.

Ho-Young P, Mi-jinoh Y, Inwook Ch. Immunomodulatory activities of corchorus olitorius leaf extract:Benefical effects in macrophage and NK cell activation immunosuppressed mice.Journal of Functional foods. 2018;.46:220-6.

Qudsia K, Ishtiaq H, Siddiqui HL, Javaid A. Antifungal activity of flavonoids isolated from mango (Mangifera indica L) leaves.Natural product Research. 2010;24(20):1907-14.

Gabino G, Deyarina G, Carla D. Analgesic and anti-inflammatory effects of mangifera indica L. extract (vimang).Phytotherapy Research:An international journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2001;15(1):18-21.

Rodeiro I, Cancino L, Gonzalez J E, Morffi J, et al. Evaluation of the genotoxic potential of Mangifera indica L extract,a new natural product with antioxidant activity. Food and Chemical Toxicology. 2006;44(10):1707-13.

Maria Elena A, Palomo M, Rodriguez L, Fuentes E. Antiplatelet activity of natural bioactive extracts from mango and its by products. Antioxidants. 2019;8(11),517.

Yasuyuki D, Akira A, Osamu I, Yuhki Y, Shigeki B, Yoshio A, et al Curcumin prevents the development of dextran sulfate sodium(DSS)-Induced experimental colitis.Digestive diseases and sciences. 2007;52(11):2993-8.

Karthikeyan A, Young KN, Moniruzzaman M, Beyene AM, Do K, Kalaiselvi S, et al. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics. 2021;13:484.

Goya-Jorge E, Jorge Rodríguez ME, Veitía MS, Giner RM. Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules. 2021;26:2315.

Harborne JB, Baxter H. Handbook of Natural Flavonoids Chichester: Wiley. 1999.

Perdew GH. Association of the Ah receptor with the 90-kDa heat shock protein. J. Biol. Chem. 1988; 263:13802.

Sogawa K, Fujii-Kuriyama Y. Ah receptor, a novel ligand-activated transcription factor. J. Biochem. 1997;122:1075.

Carver LA, Hogenesch JB, Bradfield CA. Tissue Specific Expression of the Rat Ah-Receptorand ARNTMRNAs. Nucleic Acids Res. 1994;22:3038–3044..

Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, et al. Characterization of a Subset of the Basic-Helix-Loop-Helix-PAS Superfamily That Interacts with Components of the Dioxin Signaling Pathway. J. Biol. Chem. 1997;272:8581–93.

Burbach KM, Poland A, Bradfield C. A. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl Acad. Sci. 1992; 89:8185.

Larigot L, Juricek L, Dairou J, Coumoul X. AhR Signaling Pathways and Regulatory Functions. Biochim. 2018;7:1–9.

Schulte KW, Green E, Wilz A, Platten M, Daumke O. Structural Basis for Aryl Hydrocarbon Receptor-Mediated Gene Activation. Structure. 2017;25:1025–33.

Lamas B, Natividad JM, Sokol H. Aryl Hydrocarbon Receptor and Intestinal Immunity. MucosalImmunol. 2018;11:1024–38.

Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018;8:1–22.

Denison MS, Soshilov AA, He G, Degroot DE, Zhao B. Exactly the Same but Different: Promiscuity and Diversity in the Molecular Mechanisms of Action of the Aryl Hydrocarbon (Dioxin) Receptor. Toxicol. Sci. 2011;124:1–22.

Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 Metabolism: From Adverse Health Effects to Chemoprevention and Therapeutic Options. Pharmacol. Ther. 2018;187:71–87.

Juricek L, Coumoul X. The Aryl Hydrocarbon Receptor and the Nervous System. Int. J. Mol. Sci. 2018;19:2504.

Stejskalova L, Dvorak Z, Pavek P. Endogenous and Exogenous Ligands of Aryl Hydrocarbon Receptor: Current State of Art. Curr. Drug Metab. 2011;12:198–212.

Veldhoen M, Hirota K, Westendorf AM. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453:106.

Quintana FJ, Basso AS, Iglesias AH. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65.

Nam Trung Nguyen, Hamza Hanieh, Taisuke Nakahama and Tadamitsu Kishimoto. The roles of aryl hydrocarbon receptor in immune responses. International Immunology, 2013;25;6:335-43.

Udai PS, Narendra PS, Balwan S, Lorne JH, Robert L. Resveratrol (Trans-3,5,4-trihydroxystilbene) Induces Silent Mating Type Information Regulation-1 and Down-Regulates Nuclear Transcription Factor B Activation to Abrogate Dextran Sulfate Sodium-Induced Colitis.Journal of Pharmacology and experimental therapeutics. 2009;332:829–39.

Singh NP, Singh UP, Singh B, Price RL, Nagarkatti M, et al.Activation of Aryl Hydrocarbon Receptor (AhR) Leads to Reciprocal Epigenetic Regulation of FoxP3 and IL-17 Expression and Amelioration of Experimental Colitis. PLoS ONE.2011; 6(8): e23522. doi:10.1371/journal.pone.0023522.

Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, et al. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion. 2000; 2:240–8.

Udai PS, Narendra PS, Angela M, Robert L. Chemokines and cytokines level in inflammatory bowel disease patients. Elsevier Journal.Cytokines. 2015;77:44-49.

Heinonen KM, Perreault C. Development and functional properties of thymic and extrathymic T lymphocytes. Crit. Rev. Immunol . 2008;28:441-66.

Bhandoola A, Von BH, Petrie HT, Zuniga-Pflucker JC. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 2014;26:678-89.

Gapin L, Check M. J Immunol. 2014;192: 4475-80.

Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI. Recognition of CD1d-restricted antigens by natural killer T cells. N a t . R e v . I m m u n o l . 2012;12:845-57.

Wan YY. Multi-tasking of helper T cells. Immunology. 2010;130:166-71.

Li P, Spolski R, Liao W, Leonard WJ. Complex interactions of transcription factors in mediating cytokine biology in T cells. Immunol. Rev. 2014;261:141-56.

Gratz IK, Campbell DJ. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Immunol. 2014;5:333.

Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 2014;14:154-65.

Liu X, Nurieva RI, Dong C. Transcriptional regulation of follicular T-helper (Tfh) cells. Immunol. Rev. 2013;252:139-45.

Tripathi SK, Lahesmaa R. Transcriptional and epigenetic regulation of T-helper lineage specification. Immunol. Rev. 2014;261:62-83.

His-kai W, Chen-Hao Y, Taku I, Hideosatsu MSh, Mamoru T. Dietary flavonoids Naringenin induces Regulatory T cells via aryl hydrocarbon receptor mediate pathway. Journal of Agricultural and Food Chemistry. 2012;60(9):2171-8.

Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, et al. Flavonoids in Cancer and Apoptosis. Cancers. 2019;11:28.

van der Heiden E, Bechoux N, Muller M, Sergent T, Schneider YJ, Larondelle Y, et al. Food Flavonoid Aryl Hydrocarbon Receptor-Mediated Agonistic/Antagonistic/Synergic Activities in Human and Rat Reporter Gene Assays. Anal. Chim. Acta. 2009;637:337–45.

Rao E. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783–95.

Blagih J. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41–54.

Masahiro T, Akinobu T, Sakiko H, Takuya A, Yasuyuki Sh, Hiroshi M, et al. Berberine improved experimental chronic colitis by regulating interferon-γ- and IL-17A-producing lamina propria CD4+ t cells through AMPK activation.scientific report;nature research. 2019.

Liu Y. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-kappaB signaling pathway to protect against DSS-induced colitis. International immunopharmacology 2018;57:121–31.

Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annual review of immunology. 2014; 32:609–34.

Loftus RM, Finlay DK. Immunometabolism: Cellular Metabolism Turns Immune Regulator. The Journal of biological chemistry. 2016;291:1–10.

Gubser PM. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nature immunology. 2013;14:1064–72.

Yan F. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. American journal of physiology. Gastrointestinal and liver physiology. 2012;302:504–14.

Yu XT. Berberine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PloS one. 2018;13.

Vazirian M, Nabavi SM, Jafari S, Manayi A., Natural activators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities, Food and Chemical Toxicology. 2018.

Yuanyang D, Qihang H, Jiaqu L, Patricia G. Wolf, Hammed Ayansola and Bingku Zhang. Quercetin alleviate intestinal oxidative Damage induced by hydrogen peroxide via modulation of GSH;invitro screening and in vivo evaluation in a colitis model.American Chemical Society. 2020;5(14):8334-48.

Bo Qian. Ameliorative effect of sinapic acid on Dextran Sodium Sulfate(DSS) induced ulcerative colitis in Kunmung KM mice.Oxid Med Cell Longev. 2020.

Miao RR, Zhan S, Hu X T,Yuan W M. .Myricetin and M10,a myricetin-3-B-D lactose sodium salt,modifying composition of gut microbiota in mice with ulcerative colitis.Toxicology letters. 2021;346:7-15.

Markus B, SabineK. Westphal W, Domschke TK. Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis.Journal of Crohns and Colitis. 2012;6(2):226-35.

Brittany A. Payan K, Vanarsa H. Epigallocatechin-3-gallate ameliorates dextran sulfate sodium(DSS)-induced inflammatory bowel disease. J.Immunol. 2018;1 supplement:54.12.

Muxia Li,Ting Luo,Young Huang etal. Polysaccharide from Pycnoporus Sanguineus ameliorate dextran Sulfate Sodium induced colitis via helper T cells repertoire modulation and autophagy suppression. 2020;34(10):2649-64.

Marks GS, Brien JF, Nakatsu K, et al. Does carbon monoxide have a physiological function? (J). Trends Pharmacol Sci, 1991, 12(5): 185–188.

YANG Xiao-Xiao, KE Bo-Wen, LU Wen, WANG Bing-He. CO as a therapeutic agent: discovery and delivery forms. Chinese Journal of Natural Medicines. 2020;18(4):284–95.

Takagi T, Uchiyama K, Naito Y.The therapeutic potential of Carbon Monoxide for inflammatory bowel disease. Digestion. 2015;91:13-18.

Vidhu Sankar Babu, S Narasimhan,GM Nair.Bioproduction of Azadirachtin-A,Nimbin and salannin in callus and cell suspension cultures of neem (Azadirachta indica A. Juss).Current science. 2006;91(1):22-4.

E Coventry,Eunice Jessie Allan.Microbiological and Chemical analysis of neem (Azadirchta indica) extracts:new data on antimicrobial activity. Phytoparasitica. 2001;29(5):441-50.

Wail E, Emad M. Antibacterial activity of ginger(Zingiber officinale Rosc.) rhizome: a mini review. International journal of pharmacognosy and chinese medicine. 2018;2(4):1-8.

Rahuman A, Geetha G, Venkatesan P, Kannappan G, Bagavan A. Mosquito larvicidal activitiy of isolated compounds from the rhizome of Zingiber officinale.Phytotherapy Research. 2008;22(8):1035-9.

Singh BP, Marshall JL, He AR. Workup and Management of Immune-Mediated Colitis in Patients Treated with Immune Checkpoint Inhibitors. The oncologist. 2020;25(3):197–202.

Minjae Joo, Han Sang Kim, Tae Hoon Kwon, Alisha Palikhe, Tin Sandar Zaw, Ji Hoon Jeong, and Uy Dong Sohn. Anti-inflammatory Effects of Flavonoids on TNBS-induced Colitis of Rats. Korean J Physiol Pharmacol. 2015;19(1):43-50.

Review Article