Evaluation of the Antibacterial Effect of Garlic and Ginger on ESBL and KPC-Producing Pseudomonas aeruginosa Strains

  • Nooshin Gharibi Department of Microbiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
  • Mohsen Mirzaee Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
  • Pegah Shakib * Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran https://orcid.org/0000-0003-3525-226X
Keywords: Biofilm, Garlic, Ginger, Pseudomonas aeruginosa, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC)


Background and Aim: Due to the problems caused by the formation of biofilms in industry and medicine as well as the development of drug resistance, new methods are required to inhibit resistant microorganisms, particularly in the biofilm form. The aim of the present research was to determine the effect of garlic and ginger on the biofilm formation of Pseudomonas aeruginosa. Materials and Methods: In this study, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of garlic and ginger extracts against Pseudomonas aeruginosa were assessed by microtiter plate method. Biofilm formation was investigated by the use of microtiter plate method and staining with crystal violets. Results: The minimum inhibitory concentrations of garlic and ginger extracts against ATCC 27853 standard strain Pseudomonas aeruginosa were 40 and 2.5 mg / ml respectively. Moreover, it was 80 and 20 mg / ml for ESBL, KPC and ESBL + KPC generating strains respectively. The mean percentages of the biofilm inhibition of Pseudomonas aeruginosa by garlic and ginger extracts were 61.98% and 66.81% respectively. Conclusion: Garlic and ginger extract might be used in different compounds to inhibit Pseudomonas aeruginosa and its biofilm formation.


Kirisits MJ, Prost L, Starkey M, Parsek MR. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2005;71(8):4809-21.

Sauer K, Cullen M, Rickard A, Zeef L, Davies DG, Gilbert P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. Journal of bacteriology. 2004;186(21):7312-26.

Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microbial ecology. 2014;68(1):1-12.

Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International journal of antimicrobial agents. 2010;35(4):322-32.

Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology. 2002;292(2):107-13.

Morikawa M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of bioscience and bioengineering. 2006;101(1):1-8.

Huq A, Whitehouse CA, Grim CJ, Alam M, Colwell RR. Biofilms in water, its role and impact in human disease transmission. Current Opinion in Biotechnology. 2008;19(3):244-7.

Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS microbiology reviews. 2011;35(5):736-55.

Palaniappan K, Holley RA. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International journal of food microbiology. 2010;140(2-3):164-8.

Pavithra P, Janani V, Charumathi K, Indumathy R, Potala S, Verma RS. Antibacterial activity of plants used in Indian herbal medicine. International Journal of Green Pharmacy (IJGP). 2010;4(1).

Nair R, Chanda S. Activity of some medicinal plants against certain pathogenic bacterial strains. Indian Journal of Pharmacology. 2006;38(2):142.

Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines. 2011;8(1).

Berdy J. Bioactive microbial metabolites. The Journal of antibiotics. 2005;58(1):1.

Davies J, Ryan KS. Introducing the parvome: bioactive compounds in the microbial world. ACS chemical biology. 2011;7(2):252-9.

Gull I, Saeed M, Shaukat H, Aslam SM, Samra ZQ, Athar AM. Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Annals of clinical microbiology and antimicrobials. 2012;11(1):8.

Kumar G, Karthik L, Rao KB. A review on pharmacological and phytochemical properties of Zingiber officinale Roscoe (Zingiberaceae). Journal of Pharmacy Research. 2011;4(9):2963-6.

Sharifi-Rad M, Varoni E, Salehi B, Sharifi-Rad J, Matthews K, Ayatollahi S, et al. Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules. 2017;22(12):2145.

Afzal Μ, Al-Hadidi D, Menon M, Pesek J, Dhami M. Ginger: an ethnomedical, chemical and pharmacological review. Drug metabolism and drug interactions. 2001;18(3-4):159-90.

Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. Journal of medicinal food. 2005;8(2):125-32.

Banerjee S, Mullick H, Banerjee J, Ghosh A. Zingiber officinale:‘a natural gold’. Int J Pharmaceutical Bio-Sci. 2011;2:283-94.

Amagase H. Clarifying the real bioactive constituents of garlic. The Journal of nutrition. 2006;136(3):716S-25S.

Roy J, Shakleya DM, Callery PS, Thomas JG. Chemical constituents and antimicrobial activity of a traditional herbal medicine containing garlic and black cumin. African Journal of Traditional, Complementary and Alternative Medicines. 2006;3(2):1-7.

Goncagul G, Ayaz E. Antimicrobial effect of garlic (Allium sativum) and traditional medicine. J Anim Vet Adv. 2010;9(1):1-4.

Tam VH, Chang K-T, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA, et al. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2010;54(3):1160-4.

Ajayi AM, Dunde W, Abba S, Dare S, Okpanachi O, Tanayen J, et al. Phytochemical, acute toxicity and anti-inflammatory studies on aqueous extract of Hallea rubrostipulata stem bark. Internatinal Journal of Pharmacy and Biomedical Science. 2012;3(4):203-6.

Hsueh P-R, Ko W-C, Wu J-J, Lu J-J, Wang F-D, Wu H-Y, et al. Consensus statement on the adherence to Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing Guidelines (CLSI-2010 and CLSI-2010-update) for Enterobacteriaceae in clinical microbiology laboratories in Taiwan. Journal of Microbiology, Immunology and Infection. 2010;43(5):452-5.

Giani T, Tascini C, Arena F, Ciullo I, Conte V, Leonildi A, et al. Rapid detection of intestinal carriage of Klebsiella pneumoniae producing KPC carbapenemase during an outbreak. Journal of Hospital Infection. 2012;81(2):119-22.

Kamazeri TSAT, Samah OA, Taher M, Susanti D, Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pacific journal of tropical medicine. 2012;5(3):202-9.

Alade P, Irobi O. Antimicrobial activities of crude leaf extracts of Acalypha wilkesiana. Journal of Ethnopharmacology. 1993;39(3):171-4.

Habibipour R, Moradi Haghgou L. Study on hydro-alcoholic extract effect of pomegranate peel on pseudomonas aeruginosa biofilm formation. Avicenna Journal of Clinical Medicine. 2015;22(3):195-202.

O'Toole GA, Gibbs KA, Hager PW, Phibbs PV, Kolter R. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. Journal of bacteriology. 2000;182(2):425-31.

Agarwal R, Singh S, Bhilegaonkar K, Singh V. Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes. International Food Research Journal. 2011;18(4):1493.

Nyenje ME, Green E, Ndip RN. Biofilm formation and adherence characteristics of Listeria ivanovii strains isolated from ready-to-eat foods in Alice, South Africa. The Scientific World Journal. 2012;2012.

Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in US hospitals (2011-2012). Antimicrobial agents and chemotherapy. 2013;57(12):6305-10.

Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection. 2012;18(3):268-81.

Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006;72(3):2064-9.

Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, et al. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of ethnopharmacology. 2002;79(2):213-20.

Molana Z, Shahandeh Z. Effect of garlic (allium sativum) and garlic extract on growth inhibition of pseudomonas aeroginosa. 2003.

Rostamirad M, Javadi A, Akbari T, Heidarpour A, Jamali M, Mahdavi R, Et Al. The Antimicrobial Effect of Methanolic Extracts of Achillea Wilhelmsii, Myrtus Communis, and Allium Sativum on Pseudomonas Aeruginosa. 2017.

Dankert J, Tromp T, Klasen H. Antimicrobial activity of crude juices of Allium ascalonicum, Allium cepa and Allium sativum. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Erste Abteilung Originale Reihe A: Medizinische Mikrobiologie und Parasitologie. 1979;245(1-2):229-39.

Yahya M, Saifuddin N, Hamid U. Zingiber officinale ethanolic extract inhibits formation of Pseudomonas aeruginosa biofilm. Int J Pharm Bio Sci. 2013;3(46):e54.

Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology. 2004;94(3):223-53.

Sabahi M, esmaeili r, dastan D, Alikhani My. Antibacterial Activity of Aqueous and Alcoholic Extracts of Garlic and Aloe Vera Against Clinical Isolates of Staphylococcus aureus, Pseudomonas aeruginosa and E.coli. Iranian Journal of Medical Microbiology. 2018;12(4):288-93. doi: 10.30699/ijmm.12.4.288.

Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426(6964):306.

Loo C-Y, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, et al. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of agricultural and food chemistry. 2015;64(12):2513-22.

Original Article