The Antioxidant and Antiangiogenic Effects of Dietary supplement of Nigella sativa Crude Oil on Breast Tumor in BALB/c Mice

Sima Bahramian, Mohammad Reza Bigdeli*, Bahram Rasoulian


Background and Aim: Cancer embraces a vast range of diseases including that of the breast and is triggered by various factors such as reactive species of oxygen. Angiogenesis, then, aids the cancerous mass to meet its needs and develop further. Nigella sativa L. (NS), traditionally cultivated and consumed in the Middle East, has long been appreciated for its medicinal benefits. In this study, we aimed to look into its antioxidant and anti-angiogenic effects on breast tumor in BALB/c mice.

Materials and Methods: 3 groups of BALB/c mice, respectively received 1, 2 and 4 ml/kg/day of NS crude oil via gavaging for 4 months before breast tumor transplantation, while the control mice were gavaged with distilled water. Then tumor volume, the activity of antioxidant enzymes, the amounts of VEGF and endostatin were studied to examine NS crude oil’s impact against breast tumor.

Results and Conclusions: Our findings revealed that the mice pretreated with 4 ml/kg/day of NS oil had significantly smaller tumor volumes, higher SOD and CAT activity, reduced VEGF and increased endostatin amounts. So, we came to this that Nigella sativa crude oil seems to inhibit breast tumor growth in part by improving the activity of antioxidant enzymes and in part by interfering with angiogenesis. More studies are, yet, required to better illuminate its other mechanisms of involvement.


Breast cancer; Antioxidants; Nigella sativa L.; Superoxide dismutase; Catalase; Angiogenesis; Endostatin

Full Text:



Foster I. Cancer: A cell cycle defect. Radiography. 2008;14(2):144-9.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology. 2007;39(1):44-84.

Colton C, Gilbert D. Reactive Oxygen Species in Biological Systems: An Interdisciplinary Approach. 1999: Springer.

Klaunig JE, Kamendulis ML, The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004;44:239-67.

Mayne ST. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr. 2003;133(3):933-40.

Bagchi K, Puri S. Free radicals and antioxidants in health and disease. Eastern Med Health J. 1998;4(2):350-60.

Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1-18.

Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353-64.

Milkiewicz M, Ispanovic E, Doyle E, Jaas TL. Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem & Cell Biol. 2006;38(3):333-57.

Wen W, Lu J, Zhang K, Chen S. Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway. Cancer Prev Res. 2008;1(7):554-61.

Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific J Trop Biomed. 2013;3(5):337-52.

Nickavar B, Mojab F, Javidnia K, Amoli MA. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Z Naturforsc C. 2003;58(9/10):629-31.

Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol. 2005;5(14);1749-70.

Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. 2012 [cited 2013; Available from:

Paarakh PM. Nigella sativa Linn.–A comprehensive review. Indian J Natural Prod Res. 2010;1(4):409-29.

Badary OA, Taha RA, Gamal el-Din AM, Abdel-Wahab MH. Thymoquinone is a potent superoxide anion scavenger. Drug & Chem Toxicol. 2003;26(2):87-98.

Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, et al., Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell & Mol Med. 2008;12(1):330-42.

Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, et al. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther. 2008;7(7):1789-96.

Li F, Rajendran B, Sethi G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol. 2010;161(3):541-54.

Hajimoradi M, Hassan ZM, Pourfathollah AA, Daneshmandi S, Pakravan N. The effect of shark liver oil on the tumor infiltrating lymphocytes and cytokine pattern in mice. J Ethnopharmacol. 2009;126(3):565-70.

Bigdeli MR, Rasoulian B, Meratan AA. in vivo normobaric hyperoxia preconditioning induces different degrees of antioxidant enzymes activities in rat brain tissue. European J Pharmacol. 2009;611(1):22-9.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem. 1976;72(1):248-54.

Mohammadi E, Bigdeli MR. Effects of preconditioning with normobaric hyperoxia on Na+/Ca 2+ exchanger in the rat brain. Neuroscience. 2013;237:277-84.

Fleming S. The molecular biology of cancer: the basics. Surgery (Oxford). 2003;21(11):iii-vi.

Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, et al. Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog. 2004;39(2):103-13.

Gosselin K, Martien S, Pourtier A, Vercamer C, Ostoich P, Morat L, et al. Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res. 2009;69(20):7917-25.

Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376-81.

Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2004;24(3):367-80.

Aggarwal S, Subberwal M, Kumar S, Sharma M. Brain tumor and role of β-carotene, a-tocopherol, superoxide dismutase and glutathione peroxidase. J Cancer Res Ther. 2006;2(1):24-7.

Okada F, Shionoya H, Kobayashi M, Kobayashi T, Tazawa H, Onuma K, et al. Prevention of inflammation-mediated acquisition of metastatic properties of benign mouse fibrosarcoma cells by administration of an orally available superoxide dismutase. Br J Cancer. 2006;94(6):854-62.

Plymate SR, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Zhang Y, et al. Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene. 2003;22(7):1024-34.

Wilcox CS. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol & Ther. 2010;126(2):119-45.

Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem. 2004;279(31):32804-12.

Góth L. Catalase deficiency and type 2 diabetes. Diabetes Care. 2008;31(12):93.

Góth L, Lenkey A, Bigler WN. Blood catalase deficiency and diabetes in Hungary. Diabetes Care. 2001;24(10):1839-40.

Mason EE, Chin TF, Li YW, Ziffren SE. Cancer and human liver catalase. Cancer Res. 1960;20(10):1474-81.

De Craemer D, Pauwels M, Hautekeete M, Roels F. Alterations of hepatocellular peroxisomes in patients with cancer. Catalase cytochemistry and morphometry. Cancer. 1993;71(12):3851-8.

Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 2001;61(23):8578-85.

Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, et al. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. American J Epidemiol. 2005;162(10):943-52.

Surapaneni KM, Gopan CS. Status of lipid peroxidation and antioxidant enzymes in patients with carcinoma of breast. JMSR. 2007;15:21-4.

Folkman J. Role of angiogenesis in tumor growth and metastasis. in Seminars in oncology. 2002. Elsevier.

Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136(2):261-76.

Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643-51.

Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, et al, Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380(6573):439-42.

Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435-9.

Rak J, Filmus J, Finkenzeller G, Grugel S, Marmé D, Kerbel RS. Oncogenes as inducers of tumor angiogenesis. Cancer Met Rev. 1995;14(4):263-77.

Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. P Proc Natl Acad Sci. 2002;99(17):11399-404.

O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. cell. 1997;88(2):277-85.

Shichiri M, Hirata Y. Antiangiogenesis signals by endostatin. FASEB J. 2001;15(6):1044-53.

Kisker O, Becker CM, Prox D, Fannon M, D'Amato R, Flynn E, et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 2001;61(20):7669-74.

Feldman AL, Alexander HR, Hewitt SM, Lorang D, Thiruvathukal CE, Turner EM, et al. Effect of retroviral endostatin gene transfer on subcutaneous and intraperitoneal growth of murine tumors. J Nati Cancer Inst. 2001;93(13):1014-20.

Abdollahi A, Hahnfeldt P, Maercker C, Gröne HJ, Debus J, Ansorge W, et al. Endostatin's antiangiogenic signaling network. Mol Cell. 2004;13(5):649-63.

Folkman AL. Tumor angiogenesis. Adv Cancer Res. 1985;43(1):174.

Burits M, BucarF. Antioxidant activity of Nigella sativa essential oil. Phytother Res. 2000;14(5):323-8.

Hamdy NM, Taha RA. Effects of Nigella sativa oil and thymoquinone on oxidative stress and neuropathy in streptozotocin-induced diabetic rats. Pharmacology. 2009;84(3):127-34.

Ebru U, Burak U, Yusuf S, Reyhan B, Arif K, Faruk TH, et al. Cardioprotective Effects of Nigella sativa oil on cyclosporine a‐induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol. 2008;103(6):574-80.

Kanter M, Coskun O, Kalayci M, Buyukbas S, Cagavi F. Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol. 2006;25(3):127-33.

Mousavi SH, Tayarani-Najaran Z, Asghari M, Sadeghnia HR. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol. 2010;30(4):591-8.

Assayed MA. Radioprotective effects of black seed (Nigella sativa) oil against hemopoietic damage and immunosuppression in gamma-irradiated rats. Immunopharmacol Immunotoxicol. 2010;32(2):284-96.

Nagi MN, Almakki HA. Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytotherap Res. 2009;23(9):1295-8.

Yildiz F, Coban S, Terzi A, Ates M, Aksoy N, Cakir H, et al. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World J Gastroenterol. 2008;14(33):5204.

Khan N, Sultana S. Inhibition of two stage renal carcinogenesis, oxidative damage and hyperproliferative response by Nigella sativa. Eur J Cancer Prev. 2005;14(2):159-68.

Yaman I, Balikci E. Protective effects of Nigella sativa against gentamicin-induced nephrotoxicity in rats. Exp Toxicol Pathol. 2010;62(2):183-90.

Rajkapoor B, Anandan R, and Jayakar B. Anti-ulcer effect of Nigella sativa Linn against gastric ulcers in rats. Curr Sci-Bangalore. 2002;82(2):177-8.

Terzi A, Coban S, Yildiz F, Ates M, Bitiren M, Taskin A, et al. Protective effects of Nigella sativa on intestinal ischemia-reperfusion injury in rats. J Invest Surg. 2010;23(1):21-7.

Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer lett. 2008;266(1):37-52.

Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU. Thymoquinone: fifty years of success in the battle against cancer models. Drug Disc Today. 2014;19(1):18-30.

Peng L, Liu A, Shen Y, Xu HZ, Yang SZ, Ying XZ, et al. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol Reports. 2013;29(2):571-8.

Paramasivam A, Kalaimangai M, Sambantham S, Anandan B, Jayaraman G. Anti-angiogenic activity of thymoquinone by the down-regulation of VEGF using zebrafish ( Danio rerio) model. Biomed Prev Nutr. 2012;2(3):169-73.

Kim EJ, Choi MR, Park H, Kim M, Hong JE, Lee JY, et al. Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res. 2011;13(4): R78.



  • There are currently no refbacks.

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.


This work is licensed under a Creative Commons license (CC-BY).  However, the license permits any user to read, copy, redistribute and and make derivative the material in any medium or format for any purpose, even commercially.


Lorestan University of Medical Sciences, Khorramabad, Iran.

ISSN: 2538-2144