Genus Rubia: Therapeutic Effects and Toxicity: A Review

  • Marzieh Eskandarzadeh Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Akam Esmaeili Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Mohammad Reza Nikbakht Department of Physiology and Pharmacology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
  • Yukio Hitotsuyanagi Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hajiochi, Tokyo 192-03, Japan
  • Yuri N Shkryl Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russian Federation
  • Javad Ghasemian Yadegari Department of Pharmacognosy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Hassan Rezazadeh Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Javad Khalilifard * Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Keywords: Rubiaceae, Rubieae, Rubia, Toxicity, Protective effects

Abstract

The Rubiaceae family taxonomic classification is complex. Genus Rubia with 70 species belongs to Rubieae tribe of Rubioideae subfamily of the Rubiaceae family. These species have been widely distributed and cultivated around the world, and are mainly concentrated in the tropics. The effects of bioactive metabolites of various parts, particularly roots of Rubia species have been thoroughly examined, and their pharmacological and toxicological effects have been described. Antioxidant, anti-inflammatory, antitumor, antidiabetic, anti-arthritic, antiseizure and antimicrobial effects as well as toxicological properties of Rubia species have been previously reported. This study was conducted as a literature survey of various species of Rubiaceae published from 1992 to 2020. Moreover, their toxic and protective effects on living organisms were summarized.

References

Singh R, Chauhan SM. 9,10-Anthraquinones and other biologically active compounds from the genus Rubia. Chemistry & biodiversity. 2004;1(9):1241-64.

De Santis D, Moresi M. Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Industrial Crops and Products. 2007;26(2):151-62.

Chandrashekar B, Prabhakara S, Mohan T, Shabeer D, Bhandare B, Nalini M, et al. Characterization of Rubia cordifolia L. root extract and its evaluation of cardioprotective effect in Wistar rat model. Indian journal of pharmacology. 2018;50(1):12.

Gunasekara T, Radhika N, Ragunathan K, Gunathilaka D, Weerasekera M, Hewageegana H, et al. Determination of antimicrobial potential of five herbs used in ayurveda practices against Candida albicans, Candida parapsilosis and methicillin resistant Staphylococcus aureus. Ancient science of life. 2017;36(4):187.

Lajkó E, Bányai P, Zámbó Z, Kursinszki L, Szőke É, Kőhidai L. Targeted tumor therapy by Rubia tinctorum L.: analytical characterization of hydroxyanthraquinones and investigation of their selective cytotoxic, adhesion and migration modulator effects on melanoma cell lines (A2058 and HT168-M1). Cancer cell international. 2015;15(1):1-15.

Nipanikar SU, Nagore D, Chitlange SS, Buzruk D. Evaluation of anti-inflammatory and antimicrobial activity of AHPL/AYTOP/0213 cream. Ayu. 2017;38(1-2):82.

Anantharaman A, Priya RR, Hemachandran H, Akella S, Rajasekaran C, Ganesh J, et al. Toxicity study of dibutyl phthalate of R ubia cordifolia fruits: in vivo and in silico analysis. Environmental toxicology. 2016;31(9):1059-67.

Bajpai VK, Alam MB, Quan KT, Choi H-J, An H, Ju M-K, et al. Cytotoxic properties of the anthraquinone derivatives isolated from the roots of Rubia philippinensis. BMC complementary and alternative medicine. 2018;18(1):200.

Blomeke B, Poginsky B, Schmutte C, Marquardt H, Westendorf J. Formation of genotoxic metabolites from anthraquinone glycosides, present in Rubia tinctorum L. Mutation research. 1992;265(2):263-72.

Nakanishi F, Nagasawa Y, Kabaya Y, Sekimoto H, Shimomura K. Characterization of lucidin formation in Rubia tinctorum L. Plant physiology and biochemistry : PPB. 2005;43(10-11):921-8.

Veremeichik G, Bulgakov V, Shkryl Y, Silantieva S, Makhazen D, Tchernoded G, et al. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene. Journal of biotechnology. 2019;306:38-46.

Mishchenko N, Vasil’eva E, Sholokh A, Dyshlovoi S, Fedoreev S. Anthraquinones of Rubia jesoensis roots. Chemistry of Natural Compounds. 2014;50(2):349-51.

Van Tegelen LJ, Moreno PR, Croes AF, Verpoorte R, Wullems GJ. Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant physiology. 1999;119(2):705-12.

Lodhi A, Bongaerts R, Verpoorte R, Coomber S, Charlwood B. Expression of bacterial isochorismate synthase (EC 5.4. 99.6) in transgenic root cultures ofRubia peregrina. Plant cell reports. 1996;16(1-2):54-7.

Chownk M, Thakur K, Yadav SK. Retrospect and prospects of plant metabolic engineering. Journal of plant biochemistry and biotechnology. 2019;28(1):1-13.

Talou JR, Verberne MC, Muljono RB, van Tegelen LJ, Bernal BG, Linthorst HJ, et al. Isochorismate synthase transgenic expression in Catharanthus roseus cell suspensions. Plant Physiology and Biochemistry. 2001;39(7-8):595-602.

Han Y-S, Van der Heijden R, Verpoorte R. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell, Tissue and Organ Culture. 2001;67(3):201-20.

Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey K-M, Ritala A, et al. Hairy Root Cultures—A Versatile Tool With Multiple Applications. Frontiers in Plant Science. 2020;11.

Lodhi AH, Charlwood BV. Agrobacterium rhizogenes-mediated transformation of Rubia peregrina L.: in vitro accumulation of anthraquinones. Plant cell, tissue and organ culture. 1996;46(2):103-8.

Bulgakov VP. Functions of rol genes in plant secondary metabolism. Biotechnology advances. 2008;26(4):318-24.

Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, et al. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnology and bioengineering. 2008;100(1):118-25.

Cheng S-H, Sheen J, Gerrish C, Bolwell GP. Molecular identification of phenylalanine ammonia‐lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS letters. 2001;503(2-3):185-8.

Shkryl Y, Veremeichik G, Bulgakov V, Zhuravlev YN. Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium‐dependent protein kinase gene. Biotechnology and bioengineering. 2011;108(7):1734-8.

Shkryl YN, Veremeichik G, Makhazen D, Silantieva S, Mishchenko N, Vasileva E, et al. Increase of anthraquinone content in Rubiacordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene. Plant cell reports. 2016;35(9):1907-16.

Vasconsuelo A, Picotto G, Giuletti AM, Boland R. Involvement of G‐proteins in chitosan‐induced Anthraquinone synthesis in Rubia tinctorum. Physiologia plantarum. 2006;128(1):29-37.

Bulgakov V, Tchernoded G, Mischenko N, Khodakovskaya M, Glazunov V, Radchenko S, et al. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. Journal of biotechnology. 2002;97(3):213-21.

ITOKAwA H, KoNDo K, HITOTSUYANAGI Y, ISOMURA M, TAKEYA K. Studies on RA Derivatives. V. Synthesis and Antitumor Activity of Ala2-Modified RA-VII Derivatives. Chemical and pharmaceutical bulletin. 1993;41(8):1402-10.

Lee J-E, Hitotsuyanagi Y, Fukaya H, Kondo K, Takeya K. New cytotoxic bicyclic hexapeptides, RA-XXIII and RA-XXIV, from Rubia cordifolia L. Chemical and Pharmaceutical Bulletin. 2008;56(5):730-3.

Hitotsuyanagi Y, Kusano J-i, Kim I-H, Hasuda T, Fukaya H, Takeya K. O-Seco-RA-XXIV, a possible precursor of an antitumor peptide RA-XXIV, from Rubia cordifolia L. Phytochemistry letters. 2012;5(2):335-9.

Hitotsuyanagi Y, Tsuchiya T, Ohata M, Yoshida A, Fukaya H, Park HS, et al. RA‐dimer B, a New Dimeric RA‐series Cyclopeptide Incorporating Two Different Types of Cycloisodityrosine Units, from Rubia cordifolia L. Chemistry–An Asian Journal. 2016;11(23):3389-97.

Hitotsuyanagi Y, Hirai M, Odagiri M, Komine M, Hasuda T, Fukaya H, et al. RA‐XXV and RA‐XXVI, Bicyclic Hexapeptides from Rubia cordifolia L.: Structure, Synthesis, and Conformation. Chemistry–An Asian Journal. 2019;14(1):205-15.

An X, Shang F. RA-XII exerts anti-oxidant and anti-inflammatory activities on lipopolysaccharide-induced acute renal injury by suppressing NF-κB and MAPKs regulated by HO-1/Nrf2 pathway. Biochemical and biophysical research communications. 2018;495(3):2317-23.

Divakar K, Pawar A, Chandrasekhar S, Dighe S, Divakar G. Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food and Chemical Toxicology. 2010;48(4):1013-8.

Joy J, Nair CKK. Amelioration of cisplatin induced nephrotoxicity in Swiss albino mice by Rubia cordifolia extract. Journal of cancer research and therapeutics. 2008;4(3):111.

Sharma V, Kansal L. The protective effect of Rubia cordifolia against lead nitrate-induced immune response impairment and kidney oxidative damage. Indian journal of pharmacology. 2011;43(4):441.

Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al. Nordamnacanthal potentiates the cytotoxic effects of tamoxifen in human breast cancer cells. Oncology letters. 2015;9(1):335-40.

Deoda R, Kumar D, Bhujbal S. Gastroprotective effect of Rubia cordifolia Linn. on aspirin plus pylorus-ligated ulcer. Evidence-Based Complementary and Alternative Medicine. 2011;2011.

Jaijesh P, Srinivasan K, Bhagath Kumar P, Sreejith G, Ciraj A. Anti arthritic property of the plant Rubia cordifolia lin. Pharmacologyonline. 2008;1:107-13.

Inoue K, Yoshida M, Takahashi M, Shibutani M, Takagi H, Hirose M, et al. Induction of kidney and liver cancers by the natural food additive madder color in a two-year rat carcinogenicity study. Food and chemical toxicology. 2009;47(1):184-91.

Inoue K, Yoshida M, Takahashi M, Fujimoto H, Shibutani M, Hirose M, et al. Carcinogenic potential of alizarin and rubiadin, components of madder color, in a rat medium‐term multi‐organ bioassay. Cancer science. 2009;100(12):2261-7.

Ishii Y, Okamura T, Inoue T, Fukuhara K, Umemura T, Nishikawa A. Chemical structure determination of DNA bases modified by active metabolites of lucidin-3-O-primeveroside. Chemical research in toxicology. 2009;23(1):134-41.

Patil RA, Jagdale SC, Kasture SB. Antihyperglycemic, antistress and nootropic activity of roots of Rubia cordifolia Linn. 2006.

Chu Z, Wang H, Ni T, Tao L, Xiang L, Zhou Z, et al. 28-Hydroxy-3-oxoolean-12-en-29-oic Acid, a Triterpene Acid from Celastrus Orbiculatus Extract, Inhibits the Migration and Invasion of Human Gastric Cancer Cells In Vitro. Molecules. 2019;24(19):3513.

Kalra P, Datusalia AK, Sharma S. Antiulcer potential of Rubia cordifolia Linn. in experimental animals. International Journal of Green Pharmacy (IJGP). 2011;5(2).

Harde MT, Khairnar AS, Kasture AS, Kasture SB. Evaluation of antipsychotic and anti-diarrhoeal activities of ethanolic extract of roots of Rubia cordifolia Linn. Oriental Pharmacy and Experimental Medicine. 2008;8(1):73-80.

Gong X-P, Sun Y-Y, Chen W, Guo X, Guan J-K, Li D-Y, et al. Anti-diarrheal and anti-inflammatory activities of aqueous extract of the aerial part of Rubia cordifolia. BMC complementary and alternative medicine. 2017;17(1):20.

Karim A, Mekhfi H, Ziyyat A, Legssyer A, Bnouham M, Amrani S, et al. Anti-diarrhoeal activity of crude aqueous extract of Rubia tinctorum L. roots in rodents. Journal of Smooth muscle research. 2010;46(2):119-23.

Pawar A, Anap R, Ghodasara J, Kuchekar B. Protective effect of hydroalcoholic root extract of Rubia cordifolia in indomethacin-induced enterocolitis in rats. Indian journal of pharmaceutical sciences. 2011;73(2):250.

Sayeed M, Munawar M, Gouda T, Srivastav M, Parameshappa B, Ahmed F. Anti-diarrhoeal Potetial of root extracts of Rubia Cordifolia, Linn in Rats. Pharmacology online. 2011;2:763-73.

Essaidi I, Snoussi A, Koubaier HBH, Casabianca H, Bouzouita N. Effect of acid hydrolysis on alizarin content, antioxidant and antimicrobial activities of Rubia tinctorum extracts. Pigment & Resin Technology. 2017.

Räisänen R. Fungal colorants in applications–focus on Cortinarius species. Coloration Technology. 2019;135(1):22-31.

Bhardwaj A, Gandhi RK, Khanduja KL. Alizarin inhibits oxidative damage and lung tumors in mice induced by N-nitrosodiethylamine. International Journal of Medicine, Biology and the Environment. 2001;29(1):85-90.

Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Critical reviews in toxicology. 2002;32(5):391-411.

Li X, Shan C, Wu Z, Yu H, Yang A, Tan B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflammation Research. 2020;69(4):365-73.

Karodi R, Jadhav M, Rub R, Bafna A. Evaluation of the wound healing activity of a crude extract of Rubia cordifolia L.(Indian madder) in mice. International Journal of Applied Research in Natural Products. 2009;2(2):12-8.

Mahendra A, Bandara G, Chandanie R. A study of some anthraquinones of Rubia cordifolia L. incorporated into Pinda oil: an Ayurvedic medicinal oil used for topical application in dermatological and inflammatory conditions. International Journal of Research in Ayurveda and Pharmacy (IJRAP). 2014;5(3):334-8.

Zengin G, Degirmenci N, Alpsoy L, Aktumsek A. Evaluation of antioxidant, enzyme inhibition, and cytotoxic activity of three anthraquinones (alizarin, purpurin, and quinizarin). Human & experimental toxicology. 2016;35(5):544-53.

Biswas R, Mukherjee PK, Dalai MK, Mandal PK, Nag M. Tyrosinase inhibitory potential of purpurin in Rubia cordifolia—a bioactivity guided approach. Industrial Crops and Products. 2015;74:319-26.

Lin Z, Jiao B, Che C, Zuo Z, Mok C, Zhao M, et al. Ethyl acetate fraction of the root of Rubia cordifolia L. inhibits keratinocyte proliferation in vitro and promotes keratinocyte differentiation in vivo: potential application for psoriasis treatment. Phytotherapy research. 2010;24(7):1056-64.

Khan K, Karodi R, Siddiqui A, Thube S, Rub R. Development of anti-acne gel formulation of anthraquinones rich fraction from Rubia cordifolia (Rubiaceae). International Journal of Applied Research in Natural Products. 2011;4(4):28-36.

West BJ, Deng S, Palu AK, Jensen CJ. Morinda citrifolia Linn.(Rubiaceae) leaf extracts mitigate UVB-induced erythema. Journal of natural medicines. 2009;63(3):351-4.

Eichie FE, Arhewoh MI, Isesele JE, Okoh EO. Antimicrobial activity of extract and topical cream formulation of Mitracapus villosus (Rubiaceae). Journal of Pharmacy and Bioresources. 2011;8(2).

Eltamany EE, Nafie MS, Khodeer DM, El-Tanahy AH, Abdel-Kader MS, Badr JM, et al. Rubia tinctorum root extracts: chemical profile and management of type II diabetes mellitus. RSC Advances. 2020;10(41):24159-68.

Quan KT, Park H-S, Oh J, Park HB, Ferreira D, Myung C-S, et al. Arborinane triterpenoids from rubia philippinensis inhibit proliferation and migration of vascular smooth muscle cells induced by the platelet-derived growth factor. Journal of natural products. 2016;79(10):2559-69.

Gao Y, Su Y, Huo Y, Mi J, Wang X, Wang Z, et al. Identification of antihyperlipidemic constituents from the roots of Rubia yunnanensis Diels. Journal of ethnopharmacology. 2014;155(2):1315-21.

Ashraf M, Ahmad K, Ahmad I, Ahmad S, Arshad S, Shah SMA. Nucleoside triphosphate diphosphohydrolases (NTPDase) inhibitory activity of some medicinal plants. Journal of Medicinal Plants Research. 2011;5(10):2090-4.

Chen Y, Chen P-D, Bao B-H, Shan M-Q, Zhang K-C, Cheng F-F, et al. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish. Journal of ethnopharmacology. 2018;219:152-60.

Baek JM, Kim J-Y, Jung Y, Moon S-H, Choi MK, Kim SH, et al. Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Phytomedicine. 2015;22(1):27-35.

Di Pompo G, Poli F, Mandrone M, Lorenzi B, Roncuzzi L, Baldini N, et al. Comparative “in vitro” evaluation of the antiresorptive activity residing in four Ayurvedic medicinal plants. Hemidesmus indicus emerges for its potential in the treatment of bone loss diseases. Journal of ethnopharmacology. 2014;154(2):462-70.

Shivakumar K, Mukund H, Rabin P. Evaluation of antiosteoporotic activity of Root extract of Rubia Cordifolia in Ovariectomized Rats. Int J Drug Dev Res. 2012;4(3):163-72.

Abderrahman S, Abdallah S, Hatmal M, editors. Genotoxic and cytotoxic effects of alkaloids extracted from Rubia cordifolia roots on mice bone marrow cells. Toxicology Letters; 2016: ELSEVIER IRELAND LTD ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO ….

Abderrahman SM. Mitodepressive effect of Rubia cordifolia extract on the bone marrow cells of mice. Cytologia. 2004;69(3):307-11.

Hu YY, Feng L, Wang J, Zhang XJ, Wang Z, Tan NH. Rubipodanin B, a New Cytotoxic Cyclopeptide from Rubia podantha. Chemistry & biodiversity. 2019;16(1):e1800438.

Kasture VS, Deshmukh V, Chopde C. Anticonvulsant and behavioral actions of triterpene isolated from Rubia cordifolia Linn. 2000.

Jeong G-S, Lee D-S, Kim D-C, Jahng Y, Son J-K, Lee S-H, et al. Neuroprotective and anti-inflammatory effects of mollugin via up-regulation of heme oxygenase-1 in mouse hippocampal and microglial cells. European journal of pharmacology. 2011;654(3):226-34.

Chitra V, Pavan Kumar K. Neuroprotective studies of rubia cordifolia Linn. On β-amyloid induced cognitive dysfunction in mice. Int J Pharm Tech Res. 2009;1(4):1000-9.

Rawal AK, Muddeshwar MG, Biswas SK. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation. BMC complementary and alternative medicine. 2004;4(1):11.

Patil RA, Kasture SB. Protective effect of Rubia cordifolia on reserpine-induced orofacial dyskinesia. Natural product research. 2012;26(22):2159-61.

Diwane C, Patil R, Vyavahare P, Bhambar R. Protective effect of Rubia cordifolia in paclitaxel-induced neuropathic pain in experimental animals. Indian Journal of Pain. 2015;29(3):150.

Maxia A, Frau MA, Foddis C, Lancioni MC, Kasture V, Kasture S. Ethanolic extract of Rubia peregrina L.(Rubiaceae) inhibits haloperidol-induced catalepsy and reserpine-induced orofacial dyskinesia. Natural product research. 2012;26(5):438-45.

Kasture S, Pawar A, Kasture A, Foddis C, Frau MA, Maxia A. Effect of ethanolic extract of Rubia peregrina L.(Rubiaceae) on monoamine-mediated behaviour. Natural product research. 2011;25(20):1950-4.

Patil R, Rajendra G, Hanmant G, Sanjay K. Antioxidant and anticholinergic activity of. Rubia cordifolia, Pharmacol online. 2011;2:272-8.

Sen D, Roy B, Ahmad Farooqui N. Pharmacological Evaluation of Ethanolic Extract of Rubia Cardifolia2012. 247-50 p.

Gilani AUH, Janbaz KH. Effect of Rubia cordifolia extract on acetaminophen and CCl4‐induced hepatotoxicity. Phytotherapy Research. 1995;9(5):372-5.

Rao GMM, Rao CV, Pushpangadan P, Shirwaikar A. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. Journal of ethnopharmacology. 2006;103(3):484-90.

Sabbani P, Thatipelli R, Surampalli G, Duvvala P. Evaluation of Hepatoprotective Activity with different Fractions of Gardenia gummifera Linn. on Paracetamol Induced Liver Damage in Rats. J Drug Metab Toxicol. 2016;7(199):2.

Vinaykumar NM, Mahmood R, Krishna V, Ravishankara B, Shastri SL. Antioxidant and in vivo hepatoprotective effects of Gardenia gummifera L.f. fruit methanol extract. Clinical Phytoscience. 2020;6(1):47.

Song M, Hong M, Choi HG, Jahng Y, Lee SH, Lee S. Effects of Mollugin on Hepatic Cytochrome P450 in Male ICR Mice as Determined by Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrometry Letters. 2012;3(4):104-7.

Kim H, Choi HK, Jeong TC, Jahng Y, Kim DH, Lee S-H, et al. Selective inhibitory effects of mollugin on CYP1A2 in human liver microsomes. Food and chemical toxicology. 2013;51:33-7.

Marhoume F, Zaid Y, Boufous H, Errafiy N, Laaradia MA, Laadraoui J, et al. Hepatoprotective Activity of Rubia tinctorum’s Extract against CCl4 Induced Hepatic Injury in Rats. European Journal of Medicinal Plants. 2017:1-10.

Aly HA, Hassan MH, El-Beshbishy HA, Alahdal AM, Osman A-MM. Dibutyl phthalate induces oxidative stress and impairs spermatogenesis in adult rats. Toxicology and industrial health. 2016;32(8):1467-77.

Published
2022-08-09
Section
Review Article